If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-45-25=0
We add all the numbers together, and all the variables
10n^2-70=0
a = 10; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·10·(-70)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*10}=\frac{0-20\sqrt{7}}{20} =-\frac{20\sqrt{7}}{20} =-\sqrt{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*10}=\frac{0+20\sqrt{7}}{20} =\frac{20\sqrt{7}}{20} =\sqrt{7} $
| 4(n+5=3(2n+10 | | 8+3(x-6)=-6x-3+2x+14 | | 7x²-9x-4=0 | | 6x-9=9x×4 | | x=0.5^x | | -50+2x^2=0 | | 4t=60+10 | | X(x-9)=18 | | 9x+4x÷3x=27 | | 1.1y=1.6y | | 3^x+2=7x | | (2/3x+1=5-8) | | y^2-22y+10=0 | | 2x+2=3×-2 | | X(x+7)=15 | | X^2+10x÷5=840 | | 4.6•y=44.16 | | Y+50=2y-20 | | 7x/2=5x-9/6 | | 24-n=25 | | 79=2a | | X(x+4)=23 | | x^2+197x-5000=0 | | 64÷2x=8 | | 216=(x+6)*x | | x^2+12=216 | | 75+2x=5.75x | | 50+2x=4.00 | | 10=((t*t)-t)/2 | | 3x^2+6x=1/3 | | 10=t^2-t/2 | | -3(4x-2)=-6(2x-4) |